
図.1超小型OLEDと ボリウムで
 時計の時刻入力の実現

　今回は、制御IC SSD1306を使った 超小型OLED
にて、ソフトで　反転表示を 実現します。
　反転表示とは、OLED表示の 明るい部分と暗い部
分を 逆転させて表示させる事です。（ 図.1 参照 ）

　反転表示を何に使うかというと、OLED上で、複数
の数値項目を表示していて、そのうちの一つが、編
集対象になっている事を明確に表示させるためで
す。
　例えば、時計の時刻設定を、行う場合、時、分、秒
を 順次設定する場合を考えます。
　12時 34分 56秒 を 設定する事にします。
押しボタン等で編集モードにして、②の時の編集で
12を入力して、③の分の編集で 34を入力して、④
の秒で 56を入力して、 ⑤で、変更完了です。

　このような編集シーケンスをプログラムで実現しま
す。

ABCDEFG ABCDEFG

反転表示

図.2

00:00:00①

②

③

00:00:00

12:00:00

12

34

④ 12:34:0056

12:34:56⑤

時の変更

分の変更

秒の変更

変更完了

初期状態

OLEDドライバに、反転表示機能の実装
　OLEDに、反転表示機能を実装するソースは
半角文字FONTを読み込む dsd_OLED_sub.c で
す。　変更箇所は、 put_char_8x16() 関数内と
put_char_16x32() 関数内の ２箇所です。
 このページでは、put_char_8x16() 関数内の
一部分を示します。　
赤い矢印で指している ~ で、bit反転しています。

i2c_write_7b(c_ai.adr, buf, 9); // 2021-08-29 変更
ptr = get_bmf_8x16_asc(code); // ASCIIコードのフォントデータ取得
if(Rev_sw == 1) // ★　反転表示を行う？ 21-12-26 追加
{

for(i=0; i<16; i++) // 16byte分 繰り返す
{

buf[i] = ~*ptr; // bit反転して buf に格納（ 反転表示のため ）
ptr++; // ptr更新

}
ptr = buf; // ptr を bufの先頭アドレスに変更する

}

void put_char_8x16(int x, int y, char code)

for(i=0; i<16; i++)
{

dt = *ptr; // ROMから 1Byte FontDataを取り出す

if(Rev_sw == 1) dt = ~dt; // ★ 21-12-26 反転表示を行う？

Wb.w = exp2_pattern(dt); // Byte pattern -> Word pattern変換

void put_char_16x32(int x, int y, char code)

 このページでは、put_char_16x32() 関数内の
一部分を示します。　
赤い矢印で指している ~ で、bit反転して
ます。

要は、bit=1（明るいDot）と、bit=0（暗いDot）を、入れ替えてるだけです。

 if(mode > 0)
 {
 if(n == 0) set_reverse_disp(0); // 正常表示
 if(n > 24) set_reverse_disp(1); // 反転表示
 }

static BYTE Rev_sw; // リバース表示スイッチ（ 0=Normal 、1=Reverse ）

//*************************************
//** 反転表示フラグの 設定 **
//** ------------------------------- **
//** sw = 0 ： ノーマル表示 **
//** sw = 1 ： 反転表示 **
//*************************************
void set_reverse_disp(BYTE sw)
{

Rev_sw = sw;
}

編集項目の ブリンク表示を行っている箇所です。 modeが 0　の時、通常の時刻 歩進 処理です。
modeが、1以上の時、編集状態で　ブリンク表示が、有効になります。 　n は 1/50秒で、インクリ
メントされ、50に、なったら、0に戻ります。 　1 秒の後半 0.5秒は 反転表示になります。

　呼び出される側： dsd_OLED_sub.c

　Rev_sw=0 で 正常表示、Rev_SW=1 で 反転表示に
 なります。　正常表示、反転表示の設定は、
 set_reverse_disp() の引数で設定します。

 呼び出す側： OLED_Rev_Disp.c

時刻データを、どうやって入力するか

　今回のマイコンには、テンキーは、付けて
いませんので、数値は どうやって入力する
のか という事になります。
　実は、この時刻等の限定的な数値入力を行
うためにボリウムを付けていたのです。

時、分、秒 のアイテム間の移動は、押しボ
タンを使いますが、 時、分、秒 の 数値入
力は、ボリウムを、回して行います。
　

よって 時の場合は、ボリュームを回す事に
より、0～23 の値を 入力出来るようにして
おきます。
分と 秒は、ボリュームを回す事により 0～
59 の値を、入力出来るようにしておきま
す。

　ボリュームには、音量調整と考えた場合、
Min側に、0V　, Max側に Vcc 回転する中点
を、A/D入力に接続します。 R8Cマイコンの
A/D入力は、10bitで、0 ～ 1023 の量子化数
が、出てきます。 この量子化数を、演算処
理して、0～23 または、0～59 の値が出るよ
うにすれば、時計のデータを入力できます。
　A/Dの処理は メインの OLED_Rev_Disp.c
内にあります。
演算処理は、以下のように行っています。

dh = ad / 43; // 時の値：0 ～ 23
ae = ad;
if(ae > 1016) ae = 1016;
dm = ae / 17; // 分の値：0 ～ 59

A/Dコンバータの構成

(参考) A/D入力の使い方

　今回は、マイコン内蔵の A/Dコンバータに
関して少し説明します。　A/Dコンバータと
は、0～5V または、0～3.3V のアナログ電圧
値を、デジタル量子化数に変換します。

10bitの A/Dコンバータの場合 0 ～ 1023 の
量子化数に変換します。 12bitの 場合は、
0 ～ 4095 の 量子化数に変換します。

 通常 10bitのA/Dコンバータを内蔵するマ
イコンが 多いです。 少数派ですが 12bitの
A/Dコンバータを内蔵したマイコンもありま
す。
　16bit分解能以上の A/Dコンバータは、専
用の A/DコンバータICを使う事になります。
　高分解能のA/Dコンバータは、ローノイズ
の電源や、高い安定性の基準電圧等、アナロ
グ回路的に、難しくなります。

通常、マイコンに内蔵されている A/Dコン
バータは、逐次比較型A/Dコンバータと呼ば
れます。 逐次比較型A/Dコンバータの大雑把
な構成を示します。 A/Dコンバータの前段に
アナログマルチプレクサと、サンプルホル
ダーの２つの回路があります。　

ch.0

ch.1

ch.2

ch.3

ch.4

A/D
コンバータ

アナログ
マルチプレクサ

サンプル
ホルダー

A/Dコンバータの構成

ch.0

ch.1

ch.2

ch.3

ch.4

A/D
コンバータ

アナログ
マルチプレクサ

サンプル
ホルダー

A/D変換には 一連のシーケンスがあります。

①　アナログマルチプレクサ（ FETのアナロ
　　グスイッチ ）で、入力チャネルを選択
　　します。　この際、サンプルホルダも
　　同時にアナログマルチプレクサ側に
　　接続されます。

②　A/D変換スタートを行います。
　　同時にサンプルホルダーが、A/Dコンバ
　　ータ側に切り替わります。
　　（ A/D変換に 10us程度かかります。）

③　その後、CPUは、A/D変換が終了したか
　　確認します。 A/D変換器から、CPUに
　　A/D変換終了の割込みを かける事も
　　出来ます。

④　A/D変換器内の レジスタに入っている
　　量子化データを CPUが 読み出します。

ここで、サンプルホルダーって 何やってる
の？ と思われる方もおられるかもしれませ
ん。　理由は、②のA/D変換に 10us程度の
短い時間ではありますが、時間がかかるため
です。　その間に A/Dコンバータに、入力さ
れる電圧が動くと 誤差が 出るので、サンプ
ルホルダーのキャパシタで、電圧を保持して
いるのです。

　しかし、サンプルホルダーが、悪影響を及
ぼす場合もあります。

ch.0 が比較的高い電圧で、次の ch.1 が、
低い電圧である場合、サンプルホルダーに
蓄えられた電荷が ch.1に切り替えた瞬間に
ch.1側の外部回路に 流れ出す場合がありま
す。
特に、各チャネルに接続される外部回路の
内部抵抗が高いと 放電に時間が かかるた
め、次のA/D変換に 影響を及ぼします。
　よってセンサ等の出力インピーダンスが高
い場合は、OPAMP等のボルテージフォロアを
入れて下さい。

　または、事後処理的に使う事が多いですが
チャネル選択を行ったあと、A/D変換をスタ
ートする前に 若干の Wait を 入れるという
方法もあります。

チャネル選択

A/D変換スタート

若干のWait
この間に、サンプルホルダー
の電荷の放電が終わる。

　では、動画に移ります。

A/Dコンバータの 量子化数のダンプ表示と
時計の時刻設定を想定したデモを行います。

